线性回归分析法

一元线性回归分析和多元线性回归分析一元线性回归分析1.简单介绍当只有一个自变量时,称为一元回归分析(研究因变量和自变量之间的相关关系);当自变量有两个或多个时,则称为多元回归分析(研究因变量和自变量,

一元线性回归分析和多元线性回归分析 一元线性回归分析 1.简单介绍 当只有一个自变量时,称为一元回归分析(研究因变量 和自变量 之间的相关关系);当自变量有两个或多个时,则称为多元回归分析(研究因变量 和自变量 , ,…, 之间的相关关系)。如果回归分析所得到的回归方程关于未知参数是线性的,则称 为线性回归分析;否则,称为非线性回归分析。在实际预测中,某些非线性关系也 可以通过一定形式的变换转化为线性关系,所以,线性回归分析法成为最基本的、 应用最广的方法。这里讨论线性回归分析法。 2.回归分析法的基本步骤 回归分析法的基本步骤如下: (1) 搜集数据。 根据研究课题的要求,系统搜集研究对象有关特征量的大量历史数据。由于 回归分析是建立在大量的数据基础之上的定量分析方法,历史数据的数量及其准确 性都直接影响到回归分析的结果。 (2) 设定回归方程。 以大量的历史数据为基础,分析其间的关系,根据自变量与因变量之间所表

腾讯文库线性回归分析法
腾讯文库腾讯文库
search
课件
教案
试卷
日记
论文
读后感
中考
高考
考研
雅思
托福
行测
申论
面试攻略
AI
大数据
新媒体
登记表
合同
协议
委托
美食
司法考试
求职招聘
工作汇报
入职培训
实习报告
思想汇报
调研报告
旅游攻略
读书笔记
立享超值文库资源包
我的资料库

file线性回归分析法付费本文由文库吧提供

编辑文档编辑文档
一元线性回归分析和多元线性回归分析一元线性回归分析1.简单介绍当只有一个自变量时,称为一元回归分析(研究因变量和自变量之间的相关关系);当自变量有两个或多个时,则称为多元回归分析(研究因变量和自变量,…,之间的相关关系)。如果回归分析所得到的回归方程关于未知参数是线性的,则称为线性回归分析;否则,称为非线性回归分析。在实际预测中,某些非线性关系也可以通过一定形式的变换转化为线性关系,所以,线性回归分析法成为最基本的、应用最广的方法。这里讨论线性回归分析法。2.回归分析法的基本步骤回归分析法的基本步骤如下:(1)搜集数据。根据研究课题的要求,系统搜集研究对象有关特征量的大量历史数据。由于回归分析是建立在大量的数据基础之上的定量分析方法,历史数据的数量及其准确性都直接影响到回归分析的结果。(2)设定回归方程。以大量的历史数据为基础,分析其间的关系,根据自变量与因变量之间所表
现出来的规律,选择适当的数学模型,设定回归方程。设定回归方程是回归分析法的关键,选择最优模型进行回归方程的设定是运用回归分析法进行预测的基础。(3)确定回归系数。将已知数据代入设定的回归方程,并用最小二乘法原则计算出回归系数,确定回归方程。这一步的工作量较大。(4)进行相关性检验。相关性检验是指对已确定的回归方程能够代表自变量与因变量之间相关关系的可靠性进行检验。一般有检验、检验和检验三种方法。(5)进行预测,并确定置信区间。通过相关性检验后,我们就可以利用已确定的回归方程进行预测。因为回归方程本质上是对实际数据的一种近似描述,所以在进行单点预测的同时,我们也需要给出该单点预测值的置信区间,使预测结果更加完善。3.一元线性回归分析的数学模型用一元线性回归方程来描述之间的关系,即
查看剩余全文
复制全文
复制全文
全屏阅读
全屏阅读
下一篇
下一篇