2022年江西省赣州市宁都第五中学高一数学理上学期期末试卷含解析

2022年江西省赣州市宁都第五中学高一数学理上学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 在△ABC中,AB=3,A

B 年江西省赣州市宁都第五中学高一数学理上学期期末试 2022 【考点】指数函数的单调性与特殊点. 卷含解析 x 【分析】根据图象变换可以得到y=a+b的图象恒过定点(0,1+b),再根据函数的单调性和b< 一、选择题:本大题共小题,每小题分,共分。在每小题给出的四个选项中,只有 10550 ﹣1,即可确定答案. 是一个符合题目要求的 xx 【解答】解:∵y=a+b的图象是由y=a的图象向下平移了|b|个单位, x 又y=a的图象恒过定点(0,1), 1. 在△ABC中,AB=3,AC=2,BC=,则=( ) x ∴y=a+b的图象恒过定点(0,1+b), A.B.C.D. ∵a>1,且b<﹣1 x 则y=a+b是R上的单调递增函数,且过点(0,1+b), 参考答案: x ∴函数y=a+b的图象经过第一、三、四象限, D x ∴函数y=a+b的图象必不经过第二象限. 【考点】9N:平面向量数量积的含义与物理意义. 故选:B. 【分析】在三角形中以两边为向量,求两向量的数量积,夹角不知,所以要先用余弦定理求三角形一 4. 不等式的解集是( ) 个内角的余弦,再用数量积的定义来求出结果. 【解答】解:∵由余弦定理得cosA=, A. B. ∴, C. D. 参考答案: ∴, 故选D C 【点评】由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系, 【分析】 所以本题能考虑到需要先求向量夹角的余弦值,有时数量积用坐标形式来表达. . 先将不等式化为,然后利用二次不等式的求解原则得出该不等式的解集 2. 直线与圆的位置关系为( ) A.相切 B.相交但直线不过圆心 C.直线过圆心 D.相离 . 【详解】由题意可得,解该不等式得或 参考答案: C. 因此,不等式的解集是,故选: B 【点睛】本题考查一元二次不等式的解法,解题的关键就是二次不等式的求解过程,考查计算能力, . 属于基础题 圆心到直线的距离为:,又圆心不在直线上,所以直线 等比数列中,则等于 5. () 与圆的位置关系为相交但直线不过圆心。 x .... A20 B18 C10 D8 3. 若a>1,b<﹣1则函数y=a+b的图象必不经过( ) A.第一象限B.第二象限C.第三象限D.第四象限 参考答案: 参考答案:

腾讯文库2022年江西省赣州市宁都第五中学高一数学理上学期期末试卷含解析