岩浆流体型海底沉积物矿床
国际标准期刊编号 1075-7015, 矿床地质学, 20XX年, 第50卷, 第5号, 第404–422页。© Pleiades出版有限公司,20XX年。原文为俄文 ©E.E.AmplievaE.E
国际标准期刊编号 1075-7015, 矿床地质学, 20XX年, 第50卷, 第5号, 第404–422页。 Pleiades出版有限公司,20XX年。 © 原文为俄文 E.E.AmplievaE.E.Amplieva, 20XX年出版于Geologiya Rudnykh Mestorozhdenii, 20XX年, 第50卷, 第5号,第459–480页。 © 岩浆流体型海底沉积物矿床的例证—俄罗斯南乌拉尔塔尔干块 状硫化物矿床 E. E. Amplieva 俄罗斯科学院矿床地质,岩石学,矿物学,地球化学研究所,Staromonetnyi per.35, 莫斯科, 俄罗斯 20XX年5月20日收到文章 摘要 discussed.TheMegazone.Therhyodacite.Orebodiesrocks.Pyriteabundance.Sulfideconditions.The screens.Zoningulfide orebodies; mineralogy, texture, and structure of ore; chemical position of minerals; and fluid inclusions and relationships between stable isotopes (S, C, O) in sulfides from ores and carbonate rocks are discussed.The deposit is localized in the Uzel’ga ore field of the northern Magnitogorsk Megazone.The sulfide ore is hosted in the upper felsic sequence of the Middle Devonian Karamalytash Formation, posed of basalt, basaltic andesite, and rhyodacite.Orebodies are irregular lenses lying conformably with host rocks.Pyrite, chalcopyrite, sphalerite, and fahlore are the major ore minerals; galena, bornite, and hematite are of subordinate abundance.Sulfide mineralization bears attributes of deposition under subseafloor conditions.The carbonate and rhyolite interlayers at the roofs of orebodies and the supraore limestone sequence served as screens.Zoning typical of massive sulfide deposits was not established.The study of fluid inclusions has shown that the temperature of the hydrothermal solution varied from 375 to 110°C. δS‰ ranges from –2.4 to +3.2‰ in pyrite, from –1.2 to 34 +2.8‰ in chalcopyrite, and from –3.5 to +3.0‰ in sphalerite (CDT).These parameters correspond to an isotopic position of magmatic sulfur without anotable percentage of sulfate sulfur.δC and δO of carbonates vary from –18.1 to +5.9‰ (PDB) and from 1318 +13.7 to +27.8‰ (SMOW), respectively.The carbon and oxygen isotopic positions of carbonates from ores and host rocks markedly deviate from the field of marine car- bonates; adeep source of carbon is suggested.The results obtained show that the main mass of polysulfide ore at the Talgan deposit was formed beneath the floor of a paleoocean.The ore-forming system was short-lived and its functioning did not give rise to the formation of zonal orebodies.Magmatic fluid played the leading role in mineral formation. 数字对象识别: 10.1134/S1075701508050048 引言 化物互相作用, 塔尔干(Talgan)块状硫化物矿床由Yu.S. Emel’yanov, G.V. Petrov和V.M. Sedov于1971 形成矿化带,在此过程中,其中的Cu/(Zn +Pb)比 年在车里雅宾斯克州的Verkhneural’sk raion发 率在硫化物矿体的顶部和侧翼,不断下降 现。最接近的人员居住地位于Mezhozerny东北 (Borodaevskaya et al., 1979; Smirnov, 1982; 0.7公里处;Karagaika村以东12公里;乌恰雷城 Starostin and Ignatov, 1997; Franklinet al., 和verkhneural'sk城分别位于该矿床以北20公里, 1981; Solomon and Walshe, 1979; Ohmoto and 和以南35公里处。 Skinner, 1983; Lydon, 1988; Large, 1992)。这 该块状硫化物矿床目前采用的成因模式是基于 一模式是基于对远古块状硫化物矿床的研究。现代 海底热液和沉积型矿石构造这一概念。有认为这种 深海烟筒的发现使得这一假设得到了证实。然而, 类型的矿床是由于对流热液系统起到作用而形成的。 直接进入海水中的热液硫化物沉淀没有导致大型矿 海水在运动过程中被加热,并与赋存主岩火成岩发 体的形成,因为99%被成矿流体搬运的金属分散在 生反应。因此,热液被富集在从围岩浸出的金属中。 海水中 (Rona, 1984)。对块状硫化物矿体现代成 热金属流体与低温的海水发生混合,导致温度急剧 矿和远古成矿的研究突出了以下观点,即由于海底 下降,块矿硫化物矿石沉积在海底,热液出口附近, 沉积和其下硫化物丘的生长,硫化物出现累积。这 并与矿石间隔一定的距离。新热液与先前沉积的硫

