共轭梯度法程序及调试结果分析
1、设计题目用共轭梯度法求二次函数的极小点及极小值。 2、运行与程序(1)运行:打开matlab,确定conjugate_grad_2d.m文件夹为当前目录。 在命令窗中输入:f=conju
1、设计题目 用共轭梯度法求二次函数的极小点及极小值。 2、运行与程序 (1)运行: 打开matlab,确定conjugate_grad_2d.m文件夹为当前目录。 在命令窗中输入:f=conjugate_grad_2d([1,1],0.001) 选择不同的初始点坐标[0,0],[0,1],[1,0],和迭代精度0.01,0.0001,进 行运行时,需要多次调用conjugate_grad_2d函数。 (2)程序及说明: functionf=conjugate_grad_2d(x0,t) %用共轭梯度法求已知函数f(x1,x2)=x1^2+2*x2^2-4*x1-2*x1*x2的极值点 %已知初始点坐标:x0 %已知收敛精度:t %求得已知函数的极值:f x=x0; symsxiyia; %定义自变量,步长为符号变量 f=xi^2+2*yi^2-4*xi-2*xi*yi; %创建符号表达式f fx=diff(f,xi); %求表达式f对xi的一阶求导 fy=diff(f,yi); %求表达式f对yi的一阶求导 fx=subs(fx,{xi,yi},x0); %代入初始点坐标计算对xi的一阶求导实值 fy=subs(fy,{xi,yi},x0); %代入初始点坐标计算对yi的一阶求导实值 fi=[fx,fy]; %初始点梯度向量 count=0; %搜索次数初始为0 whiledouble(sqrt(fx^2+fy^2))>t %搜索精度不满足已知条件 s=-fi; %第一次搜索的方向为负梯度方向 ifcount<=0 s=-fi; else s=s1; end x=x+a*s; %进行一次搜索后的点坐标 f=subs(f,{xi,yi},x); %构造一元搜索的一元函数φ(a) f1=diff(f); %对函数φ(a)进行求导 f1=solve(f1); %得到最佳步长a iff1~=0 ai=double(f1); %强制转换数据类型为双精度数值 else break %若a=0,则直接跳出循环,此点即为极值点 end x=subs(x,a,ai); %得到一次搜索后的点坐标值 f=xi^2+2*yi^2-4*xi-2*xi*yi; fxi=diff(f,xi);

