初一数学绝对值难题解析(共4页)

初一数学绝对值难题解析绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。绝对值有两个意义:(1)代数意义:非负数(包

精选优质文档-----倾情为你奉上 初一数学绝对值难题解析 绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验 的是学生对基本概念的理解程度和基本性质的灵活运用能力。 绝对值有两个意义: (1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。 即|a|=a(当a≥0) ,|a|=-a (当a<0) (2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。 灵活应用绝对值的基本性质: (1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0) (4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|; 思考:|a+b|=|a|+|b|,在什么条件下成立? |a-b|=|a|-|b|,在什么条件下成立? 常用解题方法: (1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况) (2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。 (3)零点分段法:求零点、分段、区段内化简、综合。 例题解析: 第一类:考察对绝对值代数意义的理解和分类讨论思想的运用 1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下 列式子: (1)|a-b|-|c-b| 解:∵a<0,b>0 ∴a-b<0 c<0,b>0 ∴c-b<0 故,原式=(b-a)-(b-c) =c-a (2)|a-c|-|a+c| 解:∵a<0,c<0 ∴a-c要分类讨论,a+c<0 当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a 当a-c<0时,a<c,原式=(c-a)+(a+c)=2c 2、设x<-1,化简2-|2-|x-2|| 。 解:∵x<-1 ∴x-2<0 原式=2-|2-(2-x)|=2-|x|=2+x 3、设3<a<4,化简|a-3|+|a-6| 。 解:∵3<a<4 ∴a-3>0,a-6<0 原式=(a-3)-(a-6) =3 4、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是 正确的? 答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b, 专心---专注---专业

腾讯文库初一数学绝对值难题解析(共4页)