2020-2021学年广西壮族自治区柳州市金秀高中高二数学文上学期期末试卷含解析
2020-2021学年广西壮族自治区柳州市金秀高中高二数学文上学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 圆心在曲线
【分析】由函数零点的存在性定理,结合答案直接代入计算取两端点函数值异号的即可. 学年广西壮族自治区柳州市金秀高中高二数学文上 2020-2021 【解答】解:f(﹣1)=2+1﹣2=1>0,f(0)=1﹣0﹣2=﹣1<0, 学期期末试卷含解析 x 由函数零点的存在性定理,函数f(x)=()﹣x﹣2的零点所在的区间为(﹣1,0) 一、选择题:本大题共小题,每小题分,共分。在每小题给出的四个选项中,只有 10550 是一个符合题目要求的 故选,:A 3. 已知函数,则不等式的解集为( ) 1. 圆心在曲线上,且与直线2x+y+1=0相切的面积最小的圆的方程为( ) 222222 A.(x﹣1)+(y﹣2)=5B.(x﹣2)+(y﹣1)=5C.(x﹣1)+(y﹣2)=25 ee A.(,+∞)B. (0,)C. D. 22 D.(x﹣2)+(y﹣1)=25 参考答案: C 参考答案: 【分析】 A 【考点】圆的切线方程;圆的标准方程. 先判断出为上的偶函数,再利用当时,得到函数的单调性,从而可解原不等 【专题】计算题. . 式 【分析】设出圆心坐标,求出圆心到直线的距离的表达式,求出表达式的最小值,即可得到圆的半径 【详解】因为,所以为上的 长,得到圆的方程,推出选项. 偶函数, 【解答】解:设圆心为, 又等价于 即:, 则, , 当且仅当a=1时等号成立. 2 当r最小时,圆的面积S=πr最小, 当时,,故在为增函数,故等价于 22 此时圆的方程为(x﹣1)+(y﹣2)=5; 故选A. C. 即即,故不等式的解集为,故选 【点评】本题是基础题,考查圆的方程的求法,点到直线的距离公式、基本不等式的应用,考查计算 【点睛】对于偶函数 ,其单调性在两侧是相反的,并且,对于奇函数 能力. ,其单调性在两侧是相同的.另外解函数不等式要利用函数的单调性去掉对应法则. x 2. 函数f(x)=()﹣x﹣2的零点所在的区间为( ) A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3) 4. 复数的共轭复数为( ) 参考答案: A.iB.﹣iC.2﹣iD.﹣2+i A 【考点】二分法的定义. 参考答案:

