基于多维关联规则的粒度支持向量机学习方法研究
基于多维关联规则的粒度支持向量机学习方法研究摘要随着数据挖掘技术的不断发展和应用需求的提高,关联规则挖掘和支持向量机学习成为了热门的研究领域。针对单一维度的关联规则挖掘和支持向量机学习在某些领域的缺陷
基于多维关联规则的粒度支持向量机学习方法研究 摘要 随着数据挖掘技术的不断发展和应用需求的提高,关联规则挖掘和 支持向量机学习成为了热门的研究领域。针对单一维度的关联规则挖掘 和支持向量机学习在某些领域的缺陷,本文提出了一种基于多维关联规 则的粒度支持向量机学习方法。该方法可以同时考虑多个维度的数据特 征,并能够从多个维度中提取和融合有效的特征,从而提高分类精度。 实验结果表明,本文提出的方法在各个领域均有较好的分类效果,并且 能够很好地支持大规模数据的处理。 关键词:多维关联规则,支持向量机,粒度,数据挖掘,分类 Abstract With the continuous development of data mining technology and the increasing demand for application, association rule mining and support vector machine learning have become hot research fields. In view of the defects of association rule mining and single-dimensional support vector machine learning in some fields, this paper proposes a granularity support vector machine learning method based on multidimensional association rules. This method can consider multiple dimensions of data features at the same time, and can extract and fuse effective features from multiple dimensions, thereby improving classification accuracy. Experimental results show that the method proposed in this paper has good classification effects in various fields, and can support the processing of large-scale data. Keywords: multidimensional association rules, support vector machine, granularity, data mining, classification 一、引言 关联规则挖掘和支持向量机学习是数据挖掘领域中的两个热门研究 方向。关联规则挖掘是一种从大规模数据中挖掘潜在关系的方法,而支 持向量机则是一种基于学习样本的分类模型。这些方法在众多领域中得 到了广泛的应用,如金融、医疗等。然而,在某些领域中,这些方法还

