一元二次方程的根与系数的关系资料

一元二次方程的根与系数的关系 INCLUDEPICTURE "http://video.etiantian.com/fav.gif" \* MERGEFORMATINET 一、目标认知 INCLUD

一元二次方程的根与系数的关系 一、目标认知 学习目标 1 .掌握一元二次方程的根与系数的关系; 2 .能够利用一元二次方程的根与系数的关系求简单的关于根的对称式的值; 3 .能够利用一元二次方程的根与系数的关系判断两个数是否是方程的根; 4 .能够利用一元二次方程的根与系数的关系求出以两个已知数为根的一元二次方程. 重点 对一元二次方程的根与系数的关系的掌握,以及在各类问题中的运用. 难点 一元二次方程的根与系数的关系的运用. 二、知识要点梳理 一元二次方程根与系数的关系 2 ax+bx+c=0x x. 如果一元二次方程的两个实根是,,那么 12 a≠0 Δ≥0. 注意它的使用条件为, 三、规律方法指导 一元二次方程根与系数的关系的用法: ① 不解方程,检验两个数是否为一元二次方程的根; ② 已知方程的一个根,求另一个根及未知系数; ③ 不解方程,求已知一元二次方程的根的对称式的值; ④ 已知方程的两根,求这个一元二次方程; ⑤ 已知两个数的和与积,求这两数; ⑥ 已知方程的两根满足某种关系,确定方程中字母系数的值; ⑦ 讨论方程根的性质。 四、经典例题透析 1.已知一元二次方程的一个根,求出另一个根以及字母系数的值. 22 1.x-6x+m-2m+5=02m. 已知方程一个根为,求另一个根及的值 思路点拨: x=2 本题通常有两种做法,一是根据方程根的定义,把代入原方程,先求 m 出的值,再通过解方程求另一个根;二是利用一元二次方程的根与系数的关系求出另一 m. 个根及的值 x=2 解:法一:把代入原方程,得 22 2-6×2+m-2m+5=0 2 m-2m-3=0 即 m=3m=-1 解得, 12 m=3m=-1 当,时,原方程都化为 12 2 x-6x+8=0

腾讯文库一元二次方程的根与系数的关系资料