2019-2020年高中数学必修2(B)空间中的平行关系(I)

2019-2020年高中数学必修2(B)空间中的平行关系(I)一.课标要求:1.平面的基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并

2019-2020年高中数学必修2(B)空间中的平行关系(I) 一.课标要求: 1.平面的基本性质与推论 借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间 线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理: ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内; ◆公理2:过不在一条直线上的三点,有且只有一个平面; ◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直 线; ◆公理4:平行于同一条直线的两条直线平行; ◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。 2.空间中的平行关系 以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证, 认识和理解空间中线面平行、垂直的有关性质与判定。通过直观感知、操作确认,归纳出以 下判定定理: ◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行; ◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行; 通过直观感知、操作确认,归纳出以下性质定理,并加以证明: ◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行; ◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行; ◆垂直于同一个平面的两条直线平行 能运用已获得的结论证明一些空间位置关系的简单命题。 二.命题走向 立体几何在高考中占据重要的地位,通过近几年的高考情况分析,考察的重点及难点稳 定,高考始终把直线与直线、直线与平面、平面与平面平行的性质和判定作为考察重点。在 难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形 及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识 点上命题,将是重中之重。 预测xx年高考将以多面体为载体直接考察线面位置关系: (1)考题将会出现一个选择题、一个填空题和一个解答题; (2)在考题上的特点为:热点问题为平面的基本性质,考察线线、线面和面面关系的论 证,此类题目将以客观题和解答题的第一步为主。 三.要点精讲 1.平面概述 (1)平面的两个特征:①无限延展②平的(没有厚度) (2)平面的画法:通常画平行四边形来表示平面 (3)平面的表示:用一个小写的希腊字母、、等表示,如平面、平面;用表示平行四边 形的两个相对顶点的字母表示,如平面AC。 2.三公理三推论: 公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内: A,B,A,B 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的 集合是一条过这个公共点的直线。

腾讯文库2019-2020年高中数学必修2(B)空间中的平行关系(I)