【小学中学教育精选】第三章 不等式第四课时 二元一次不等式表示平面区域

第四课时 二元一次不等式表示平面区域教学目标:1.会根据二元一次不等式确定它所表示的平面区域;2.能画出二元一次不等式组表示的平面区域;3.会把若干直线围成的平面区域用二元一次不等式组表示。教学重点

新课标第一网 www.xkb1.com 新课标第一网不用注册,免费下载! www.xkb1.com 第四课时二元一次不等式表示平面区域 : 教学目标 1 .会根据二元一次不等式确定它所表示的平面区域; 2 .能画出二元一次不等式组表示的平面区域; 3 .会把若干直线围成的平面区域用二元一次不等式组表示。 二元一次不等式表示平面区域。 教学重点: 确定二元一次不等式表示的平面区域。 教学难点: : 教学过程 : 1.复习回顾 在前面的学习中,我们了解了直线与二元一次方程的关系,这一节,我们来研究二 元一次不等式所表示的平面图形(区域)。 : 2.讲授新课 xkb1.com 1 )二元一次不等式表示平面区域: AxByCAxBy 0 一般地,二元一次不等式++>在平面直角坐标系中表示直线++ C 0 =某一侧所有点组成的平面区域。 AxByCAxByC ①≥0 说明:二元一次不等式++在平面直角坐标系中表示直线++= 0 某一侧所有点组成的平面区域且包括边界; ② 作图时,不包括边界画成虚线,包括边界画成实线。 . 推导:举例说明 2 )判断二元一次不等式表示哪一侧平面区域的方法: ; 方法:取特殊点检验 AxByCxyxy 0()() 原因:由于对在直线++=的同一侧的所有点,,把它的坐标,代 AxByC 入++,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点 xyAxByCAxByC ()0 ,,从++的正负即可判断++>表示直线哪一侧的平面区域。 0000 C ≠0 特殊地,当时,常取原点检验。 . 为使大家熟悉这一方法,我们来看下面的例题 : 3.例题讲解 xy 260. :画出不等式+-<表示的平面区域 例1 xy 260(). 解:先画出直线+-=画成虚线 [:&&Z&X&X&K] 来源学科网 xy (00)262×00660 取原点,,代入+-,因为+-=-< xy 260 所以,原点在+-<表示的平面区域内,不等式 xy 260. +-<表示的区域如右图所示 :画出不等式组 例2 xy≥0x≤3) \a\al(xy5≥0 + -+表示的平面区域 分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各 个不等式所表示的平面区域的公共部分. xyxy ≥00 解:不等式-+5表示直线-+5=上及右下方 新课标第一网系列资料 www.xkb1.com

腾讯文库【小学中学教育精选】第三章