六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册知识点整理第二单元 分数乘法(一)、分数乘法的意义。 1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。 例如: EQ \F(5,12) ×6,
六年级数学上册知识点整理 第二单元 分数乘法 (一)、分数乘法的意义。 1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。 例如: EQ \F(5,12) ×6,表示:6个 EQ \F(5,12) 相加是多少,还表示 EQ \F(5,12) 的6倍 是多少。 2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数 的几分之几是多少。 例如:6× EQ \F(5,12) ,表示:6的 EQ \F(5,12) 是多少。 EQ \F(2,7) ×EQ \F(5,12) ,表示: EQ \F(2,7) 的EQ \F(5,12) 是多少。 (二)、分数乘法的计算法则: 1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。 2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。 3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化 成假分数再进行计算。 (三)、分数大小的比较: 1、一个数(0除外)乘以一个真分数,所得的积小于它本身。一个数(0除外)乘以一个假分数,所得的 积等于或大于它本身。一个数(0除外)乘以一个带分数,所得的积大于它本身。 2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数 反而大。 (四)、解决实际问题。 1分数应用题一般解题步行骤. (1)找出含有分率的关键句。 (2)找出单位“1”的量 (3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。 (4)根据已知条件和问题列式解答。 2.乘法应用题有关注意概念。 (1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少? (2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1” 不明显时,把原来的量看做单位“1”。 (3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分 之几。 (4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几? 题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是 指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产

