吉林省东北师范大学附属中学高中数学 1.3.1-1.3.2算法案例教案 文 新人教A版必修3

"吉林省东北师范大学附属中学高中数学 1.3.1-1.3.2算法案例教案 文 新人教A版必修3 "(1)教学目标(a)知识与技能1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法

"吉林省东北师范大学附属中学高中数学 1.3.1-1.3.2算法案 例教案 文新人教A版必修3 " (1)教学目标 (a)知识与技能 1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。 2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。 (b)过程与方法 在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因 式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法 计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。 (c)情态与价值 1.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。 2.在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用 算法解决数学问题的过程中培养理性的精神和动手实践的能力。 (2)教学重难点 重点:理解辗转相除法与更相减损术求最大公约数的方法。 难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。 (3)学法与教学用具 学法:在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并 能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算 法程序。 教学用具:电脑,计算器,图形计算器 (4)教学设想 (一)创设情景,揭示课题 1.教师首先提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与 30的公约数吗? 2.接着教师进一步提出问题,我们都是利用找公约数的方法来求最大公约数,如果公 约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公 约数?比如求8251与6105的最大公约数?这就是我们这一堂课所要探讨的内容。 (二)研探新知 1.辗转相除法 例1 求两个正数8251和6105的最大公约数。 (分析:8251与6105两数都比较大,而且没有明显的公约数,如能把它们都变小一 点,根据已有的知识即可求出最大公约数) 解:8251=6105×1+2146 1

腾讯文库吉林省东北师范大学附属中学高中数学