平行四边行勾股定理教案
17.1 勾股定理(一)一、教学目的1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2.培养在实际生活中发现问题总结规律的意识和能力。3.介绍我国古代在勾股定理研究方面所取得
17.1 勾股定理(一) 一、教学目的 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 二、重点、难点 1.重点:勾股定理的内容及证明。 2.难点:勾股定理的证明。 三、例题的意图分析 例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思 维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激 发学生的民族自豪感,和爱国情怀。 例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步 让学生确信勾股定理的正确性。 四、课堂引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号, 如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定 理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明 勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折 成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角 三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。 222222222222 你是否发现3+4与5的关系,5+12和13的关系,即3+4=5,5+12=13,那么就有 222 勾+股=弦。 对于任意的直角三角形也有这个性质吗? 五、例习题分析 例1(补充)已知:在△ABC中,∠C=90°,∠A、 ∠B、∠C的对边为a、b、c。 222 求证:a+b=c。 分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑 纸,让学生拼摆不同的形状,利用面积相等进行证明。 ⑵拼成如图所示,其等量关系为:4S+S=S △小正大正 22 4×ab+(b-a)=c,化简可证。 ⑶发挥学生的想象能力拼出不同的图形,进行证明。 ⑷勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之 手。激发学生的民族自豪感,和爱国情怀。 例2已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。 222 求证:a+b=c。 分析:左右两边的正方形边长相 等,则两个正方形的面积相等。 2 左边S=4×ab+c

