腾讯文库搜索-高中数学试题-招立体几何重要结论(学生版)
高中数学立体几何大题训练
文科立体几何大题1、(2012安徽19)如图,长方体中,底面是正方形,是的中点,是棱上任意一点。(Ⅰ)证明: ;(Ⅱ)如果=2,=,,,求 的长。2、(2012北京16)如图1,在Rt△ABC中,∠C
高考数学知识总结精华版-立体几何
高中数学第九章-立体几何9. 立体几何 知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①
高中数学立体几何知识点总结及例题下
- (5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,bα,a∩b=P,a∥β,
高中数学学业水平测试第6讲立体几何(学生)
第六讲 立体几何【知识点概述】1.柱体、锥体的表面积与体积2.几何体的三视图3.直线、平面之间的位置关系平行垂直的证明主要利用线面关系的转化:线面平行:
高中数学立体几何真题试题大全
高中数学立体几何真题试题大全上海立体几何高考试题汇总(01春)若有平面与,且,则下列命题中的假命题为( )(A)过点且垂直于的直线平行于.(B)过点且垂直于的平面垂直于.(C)过点且垂直于的直线
高中数学必修2立体几何
【5年真题】04(19)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直, AB=,AF=1,M是线段EF的中点.(Ⅰ)求证AM∥平面BDE;( = 2 \* ROMAN II)求证AM⊥平面
浅谈高中数学立体几何教学的体会
浅述高中数学立体几何教学体会 我校使用是人教版高中数学新教材(A版本),作为奋斗在一线普通教师,更应该直面新课改,加强对课改精神理解,不断完善自身教学素养,为新课改增砖添瓦,现笔者将高中数学必修
高中数学 立体几何初步 教学研究
专题讲座高中数学“立体几何初步”教学研究 一、“立体几何初步”教学内容的整体把握(一)“立体几何初步”内容的背景分析1.从立体几何发展的历程看立体几何课程(1)不同学段几何学习的特点一个学生从小学的数
高中数学立体几何知识点总结
立体几何一、平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3 经过
高中数学教学论文高中数学立体几何学习的几点建议
高中数学立体几何学习的几点建议一逐渐提高逻辑论证能力立体儿何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体儿何论证 的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解
高中立体几何证明垂直的专题训练[修改版]
第一篇:高中立体几何证明垂直的专题训练高中立体几何证明垂直的专题训练深圳龙岗区东升学校—— 罗虎胜立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通
高中数学解题技巧复习教案6:立体几何新题型
第六讲 立体几何新题型【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念